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Summary

Anelastic studies, although they have provided ●n important method for investigating

the mobility of point defects in solids, hwe oftcrt been di,!ficult CO anmlyzo when s

continuous spectrs of rel~xation times controls the ●nalastic response, This pcper demcribes

a new method for obtaining ●ccurate estimates of relaxation time spectra bv’direct analysis

(without prior ●ssumptions) of the dmn ~sing ● ,tonlinemr regression method. Applicstion~

to internal friction and anela~tic creep results sre Ascribed with emphmsis upon the internal

friction technique,



In Production

Stud, cs oi relaxation process --- 2- PIa S.I c me[~oas prov-~ae an Important rnetnod for

,n~ts[lga[ing ChC moblllty ofatomlc uefec~s a,, -1 ~oiutes In cr~s[allinc SOllil S. T,*o Main klIld9

of aneia~tlc exFerimcnts arc used [a study relaxation pnertomens. Internal fr[ction referred

[o as dynamic mcasur.. mcnts and ~neiastlc creep or quasi-staIIc measurements The man}

Investlga[lona uSlng [~eSe methods cover s wide range Of mttcrlals. species of defects End

klntia of rclaxatlon$. For an excellanl review covering the breadth of thlg area tne reader IS

referred to the boo. by Nowlck and Berry I 1).

One of ttre main goals ,n both Intern-l friction snd snelmstlc creep measurements IS to

aetermlne the :eiaxstlon time. t. Thla ume can of[e: be aaaoclated with some average Jump

time 0[ a point defect or SOIUIC atom Knowledge of [his time tl.en provides information

about the ri[omlc moblllty or dlffuslvlty Of the relaxlng entity. For cxampie. WIIh [he ~noek

relaxation. ‘wh; -h IS Inc Strels-. nctuced motion Oi Intcrstltlal solutes In body-centered CUBIC

metals. the dlffkslvlty can be Obtained 4irectly from the relaxation tIrne t by [hO relatlon D =
al 13671. wnere a IS [he ia[tlce parcmeter Slmplc well-behmved relax atmn processes suctl as

tnc Sncrek relaxation may be cilaracterlzeil by a slngie relaxation time If this IS the case. tnc

~alue of t IS easliy obtained for eltner tnc Internal frlctlon or the anelasuc creep

measurements Fut tne former It IS obta!ned from the relatlon of = I whIcn appl Ics for chc

maximum In the Ilternal frlctlofi peak wltn m being [he angular frequency of tne o?pcrlment

For [ne anelastlc creep mtasurcmcnts. the creep follow~ simple exponential decay so that t

IS Obtalried simply as (he ~lme constant ior decay.

The above analyses become conmdcrably there compllcatea when [h- ?elaxatlon
process ,nvolves either multlple rel~xatlons Or J spectrum of relax ntlon tlmcs ,nsreatt oi a

single time. [tthen becomes necessary Olthcr to determine each oi several discrete relaxation

Ilmes when tne num Der of discrete rclfixatlons IS unknown or to deter rnlnc the spectral

dOn Sll)f for what may be - relatlvdy complicated dlstrlbutlon of relaxation tlmeh The

purpose of thlo psper Ia to present a new method for direct analysis of relax ~tlun data whlcn

yields a cluse ●pproxlnsatlon of the actual spectr m of relaxation lmea. This ntothod IS

unllke conventional methodo because It directly snalyzc~ the data without making :r’or

asaumptlons concerning the form 0( Ihc spectrum. Conv!m!lonql methods. on tnc other harld.

usually assure. various spectra and then choose the besr one based upon goodness-of-fit to

the dsta.

Thla new mathod ha- pr~vlously bean preson; cd and val,datcd for a wldu varlcty of

relaxation time spectra apol ●d (o tht flrot-ordor klnatlcs of anelaatlc creep 12, 1) The main

thrust of this papar WIII be to apply and valldste thO s4mG ~ctnod for lnt~rn~l frlctlon
results. with [ho avallablllty of thl I mathorl. f~turc Internal frl~t~on mcaauremant~ may then

be directly analyzed 10 obtain [ha appropriate relaxation tlrnc spectrum and thus help [o
avoid the controvarsics whl:h tend to devclol~ becsuns data Ili#c boon force -rll to acsumad

spectra Thi# capability hi I alrctdy basrt used to r~aolv~ I lou~-standlrsg controversy

conccrnin~ tmm analysis of urtdantlc creep maanuramanta (4).

~:omputcr anaiyals of analaatic resultn h J alrosdy boars utod .xtenmlvaiy: nowwm. Ihe

muthod dascrtbad hcra and In Raf. [1) IS tha flrct to dlrcctly yield .hc ralaxa(, cn time

spectrum. A pocslble rdanon why dlrcct analyals mathoda Oa#@ nGI bmrr davelopcd ,n [he

paat la bacauac It wae fait that such mmhoda would only ba uoaful Iar data which had

unattainably hlth accuracy An important part of thla dovclopmont of (ha mctnod I-

acaassmant of Its applicability 10 dnla ~lth variouo amounta of txpcrtmontal error

lntareat. n~ly. It WIII be shown that tho rnathod la net highly mnslttvc ‘G !hc magnltutic oi [ha

random error Inotead. subtle dlffarencwa In the overall shat)~ of an anelastlc respon~a curve

●re most important for [ha analyala.

.
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Background

For a discussion of the problems which develop
involved instead of a discrete relaxation time, it is

when a spectrum of relaxation times is

first necessary to briefly describe [he

experimental methods and the relationships which govern the aneltsstic response. This WIII

be done for two main anelastic methods, internal friction which describes the dynamic

response and anelastic creep which describes [he quasi-static behavior. These descriptions
will necessarily be ●bbreviated, and the reader is again recommended to the definitive

trestmcnt by Nowick And Berry ( 1). Their terminology and symbols have been used through

moat of this chapter. In order to discuss the,internal friction and anelastic creep behavior it

is necessary to make uae of a simple model. the standard anelastic solid, to fully de~cribc
anelastic behavior in its most elemental form.

Standard Anelastic Solid

The standard anelastic solid is a !wo-spring, single- dashpot model in which one spring

is in parallel and the other is in series with the dashpot. The dashpot has a time constant f

which determines the time-dependent or anelastlc behavior of the model. As It will be used

here, I IS the relaxation time at constant stress, referped to as t, by No.Mick and Berry.

For a standard anclaatic solid upon application of a constant stress u at t = 9, the

dashpot resists extension of the spring in p~rallcl and the sprin~ in series er:’-ads ●lastically
to strain C,l so that the unrelaxed compliance is J , = c,,/u. Similtrly, at t > f the dashpot is
fully extended so that the anelastic or time-dependent !train 6,, ham occurred and the

compliance is the relaxed compliance J, = (col + com~u, The difference Jr - Ju M 6J. which is

the compliance of just the parallel dashpot and spring part of the model, is a meaaure of the

strength of the anelastlc relax atlo~. Thus the sthndard anclastic solid is a 3-parameter

model which can be fully described by JU, 6J and t for both internal friction and nnelastic
creep behavior.

Internsl Fric[io~

For dynamic ●xperiments the stresu is applied periodically at frequency a) so that for

an anelattic system thcra WIII be phace la~ of the strain bthind tha strasa, The angla of this

phase lao is $, the lots angle and the compliance is describad by two dynamic rasponaa

functions, a real oart J, (~) and an imatinary part Ji (os), The internal friction is eivers by

tm Was) - Jt(DS)/Jl(CU) (1)

For [he standard anelastic solid modal responding to a periodic street, the two dynamic

rasponme functiortt are givers by

J,(os)-J. ++?

J1(os)-U W
1 +(ot)f

2)

3)

which are the cquationa derived by Pebya to describe dlal,ctric relaxation as a function of

frequcrrcy Q. Thace two equations, which are for a single relaxation time, will Iatm be

modified so that they apply to a spectrum of relaxation timeai It should be noted that Eq, (3)

de~cribes the familiar internal r~ictlon peak which hat a maximum ●t rot = 1. Also, if J1(0)

for a standard anclaatic solid is plotted as IOC wt. the curve is symmetrical tbout log as? = 1,



The above descrlptiurr is for measurements at constant r of tan IV (u) as a function of

frequency; however, internal friction is more conveniently measured as a func[ion of

temperature at constant (or nearly constant) frequency. This is possible slncc the relaxation

time can usually be assumed to obey the Arrhenlus relation,

raToeQ~T (4)

where T is tbsoiute temperatures, TO is a pre. exponential fcctor, Q is the activation energy,

and k is Boltzmann’s constant. Eq. (4) may be substituted into Eqs. (l)-(3) to give an

expression for the internal friction as a function of temperature. For Ibis case the internal

friction is plotted versus l/T so that a De bye peak will still be symmetrical about its

maximum, Such a plot will scale according to the previously-discussed plot versus log m but

with scale factor Q/2.3 ~sincc

(5)

The reader is referred to Ref. ( 1) which discusses in detail [he corrections tha[ are required

due to problems such as variations of co, 6J and Ju with tcmpera~urc. Because of the

importance of the measurement of internal friction versu~ temperature (as opposed to

frequency) the final goal of the analysis described in this paper will apply to thst case.

However, the ●nalysis method which is to be described for Ircating internal frictioc

controlled by a spectrum of relaxation times is equally applicable to the isothermal

measurements described by Eqs. ( l)-(3). Since this method avoids the corrections required

with varying temperature, it will OS used In moat of the partlons which fo!low. Thus, it may

be considered that the subsequent plots of internal frlcrion versus log co can equally be
considered as plots versus I/T, but with an appropriate scale factor Q/2.3k as given by Eq.

(5).

&elaatic Cree~

The quasi-stutic behavior of’ a standard anelaatic solid will be described for the

experimental cortctltlon of maaaurin~ strain versus time at conttant stres. (The analogous

expsrimenta of measurin~ straso at concthnt atrsin yields a similar treatment but will not bfi

diacusaad, ) Tbuc, as with the intarnal friction measurements the suhscrlp( u indicating

constant stress w:II bo asoummod. i.e., t ■ r,, The strain mea~uremsnts to be described are
all at conttant tsmpcrstura and are mado with t = O tha timo at which a new slaca of stress u

IS applied ●fter equilibration for a tlma t,q %1t at a prior str.ma. Typically the experiments
muarnure either ●nalaatic creep followin~ an equilibration at zero stroaa or the recovery of

this anolas[ic creep f~llowing removal of the equilibration stress, [n either case for a

standard anelantic solid the fractional change In the anelastic ~train c(t) ia given by

Wft)m c’- ‘(t)
@o-e

- I -exp( -t/t)
m

(b)

where et and es are the initial and final (cauillbrium) str~int. Eq, {6) indlcatea that the
normalized anelaatlc creep obeys simple first-ardor kinetics for both the Ioad. on ●nd

the load-off experimsllts described above. !linca rnly a single relaxation time controls
the reaponsc, the valu L of f IS ob[sined directly fram the time constant ror thim dacay,
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Relaxation-Time Spectra

We now consider how the Internal friction mnd anelastic creep bchavlor as

Lescribed in the previous section are affected when a distribution of relaxation times

replaces the single time constant Consider N(ln r) a distribution function for a
~pectrum (on a logarithmic scale) of relaxation times which governs the anelastic

response. Here I is taken as a ratio 10 some reference value and thus is unitl-~s. Also,

N~ln f) is aormslized to unity such that

r_= N(lnt)dln~=l (7)

This and subsequent integrations are over in : rather tnan t follrwing normal practice
for presenting relaxation time spectra.

Applying this normalized relaxation [imc spectrum to rhe real and imaginary

compliance which define the internal friction we obtain

(8)

(9)

Thus the in[ernal friction tan @ = J2/Jl hts an integral in both the numerator and t!Ie

denominator. If the magnitude of the anelastic effect is small, i.e., if 6J K J,, as is often

[rue, then J, = J. so that we can eliminste [he integral in the denominator and from Eqs.

(!) and (8) obtain

(lo)

Here wc use the substitution

A m 6J/JU (lot)

where A is referred 10 at the relaxation strength, Applying the s-me method as was uoed

to obta”in Eqs. (8) ●nd (9) we olttain for tna fractional

L
W(t)= I - ‘N(lnr)aw’ d ~n r

For both the intarnll friction and [h, anelas

analaatic creep

ie CI’COP th, data ana

(II)

ysis has

bscorno considerably moro complox for i r~laxation time spectrum compa’ed to m single

time. It it now nccesa~ry to unfold the inta~ral equ~llona to obtain the spectrum. Eqa.

(8), (9). and (1 1) ●ra Fredholm equations of the flr~: kind. Such equations typically

present dlfflcultica boccuso tha problem msy ba ill po~od so thrt thora may be no

solutlon or if a solution exists, itmay not bc unique, Also, cvan if tha pro blcm is well

poaad it msy be ill conditioned bacaucc th~ random experimental error of tha

maasurcment may cauaa widely v-rying aolutiona. An important part of the analysis

which follows will ho 10 determine Iha extent to which axparirrcntal error affects [he

calculttad N(gn r) spactrum. Alto sinca tha intetiral equations each hava difrarant

kernels and the unfoldlnt can bc markedly sensitive to the kerrral. it is important to

validata the procsdura over variourn re~imoa for eaul? kernel.
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Dircc( Strectrum Analvsls Me[hod

The unfolding method to be dcscrlbed IS referred [o as Dlrcct Spcc[rurn Anal !’sis
[D SA), It involves making a sum approximation of [he integral ~nd [hen usl:g a

modified nonlinear regression rather than a linear least squares [echnlque, thereby

avoiding the highly oscillatory solutions which tend to occur with the latter with an

increased number of bins (i. e., maximum index [or the summa non), it IS equally

applicable to the internal friction and the arsclastic creep analyses. In the discussion

which follows the emphasis will be UpOIJ analysis of internal friction results. A detailed

description and validation of [he method for t~c first-order kinetics of anelastic creep

has previously beers published (2).

A key requirement of any method for unfolding an integral equation such as Eq.

(10) is that the method give only approximate solutlons since [rue solutions may not

exist. especially because of the random experimental error In the mcasurcmenr. We

then seek to establish that rhese approximl, (e solutions are Indeed unique. This is dune

by using DSA to analyze intern~l friction data which have been generated from a known

N(#n f) spccrrum and to which random experimental errcr has beers added. The

comparison between the approximate solutlon I_ror,l the DSP. and [he Input N(fn r)

distribution function Ihen allows validation of the method.

To obtain the DSA approximation of N(fn r) we first determine rho range of r

over which the spectrum will be considered. i. e., we specify the lower and upper t

limits, t, and r,. respectively. As an initinl approximation a wide ran~e is chosen, then

an analysis is done, Subsequently the spectral limits may be adjusted kccplng the upper

and lower limits so that there is room for !he talrrcglons of the spectrum. These Iimlts

then become the integration limits in Eq, (10). W: next divide thr range of log r Into n

bins of equal width 6 fn r = fn(~,ir,)in and designate that the relaxation tlmc

associated with [ho i’~ bin WIII be r,, the midpoint value (log scale) of lhc bin. The
numbar cfbirrs, n, which is chosen depends upon the resolution tha[ may ba requlrcd for

[ha particular spectrum; typlcaily 10 < n < 100, but with the corsrntralnt n ~ m, where m

is tha number of data points.

For m data points and n binrn [he sum approximation of Eq, ( 10) gives

\:IM$(os, )xA _
t

A’* ‘
(j=lmr), (nsm)

l-l
(12)

Here, Ihe relaxation strnngth A IS defined by Eq. (108) tnd

is the fractional contribution to the total relaxation from the i’h bin, N(4n t)) is [he

~poctral mmplitudc of the i’h bin, an”d 6 in f IS the provloutly defined bln spacing. Eq,

(12) IS the same equation that Nowick and Berry slva i~ discussing mulllple relax s[lon
with descrete ~pectrt (1), When we apply thts same bin method and sum approximation

10 analysis of analastlc creep. Eq, (1 1) becomes

‘: A, Cxp(-(,lr, ), (Jw(t, )a , - _ ‘=lmt), (nsrn) (12)
,.1

whare Al has tha same definition as In Eq, (12a), Thus for either kind of rnrrelastlclty

experiman, the goal of the ●nalysis IS to ob[$lrr the Al In Eqs. ( 12)or[l J)
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AC this point the DSA method makes a significant departure from traditional

unfolding methods. Although Eqs. (12) and (13) describe a linear set of equations

which can be solved for the Al ty standard icchniqucs e.g.. linear !cast. squares, a

mod; ficd nonlinear regression. least-squares method IS used in order that [he approx-

imate solution not become highly oscillatory. This oscillatory behavior IS a well known
difficulty with solutions to this type of problem. It tends to occur when the number of

bins is set large enough to be useful for resolving details in the spectrum (roughly n >

10). With increasing n the oscillations in the Al tend to become extreme ●nd produce Al
values which sre either positive or negative ●nd which have absoluto values which are

orders of magnitude greater than the expectation values. This tendency is due to the

low amplitude hi~h frequency noise which is present becauae of the random experimen-

tal error. The oscillatory solution ia prevent:d by the combined uae of the iterative

nonlinear reg:esaion and t!te constraint A, z O. (In some caaes the constraint A, z c.
where c ia Some small negative number of order -10,-4, was used; only negligible

differences were observed in the results using this instead of the zero constraint. ) The

combination of the iterative method and the constraint prevent highly oscillatory

$olutlons becauae between successive Iterations the Al do not chan~e markedly and

thus can be prevented from taking values which with later icermtions will lead to the
large negative values ●nd concomitant oscillations.

The nonlinear regression method which IS best suited to the ●nalysla we have

described is a modified Levenberg. Marquardt algorithm [3). It has ●n advantage over

other nonlinear regression methods because it haa the capability of varyln~ the

multlplyin S factor for adjuating the Levanberg parameter ●nd thus dgcreaslng the

number of i~eratlons. Even with this Improvement the method tends to require a

relatively large number of iterations, often mo c than IO’ depending upon the con.
vergencc criteria. Several different termination criteria wera used. With the preferred

one a tolerance is chosen [typically tol = (machlnc precision)’ wllh 0.50 s r s 99) and

then termination occurs when the estimate of the relative error between A, and the

solution IS less than tol for ●ll A,.

Either of Iwo methods were used to force the constraint A, z O. With tho first. a

substitution method, a non. nagatlve function ia ~ubstltuted for A, and then after

Iteration IS complete [he A, ●re back-calculated. With the second mmhod the constraint
was obtained by modlflcc[lon such that ●ny Al < 0 i~ set equal to O. Thi~ method.

although it IS actually ●n improper use of the algorithm for tha nonlinear rc~reaalon

ba~auae it modifies the solut:on botwacn Iteratlona. 10 workable bocauac the drastic

oaclllatory behavior requires several Iteratlona to develop so that ●fter a #iven

Iteration any A, < 0 10 still small enou~h so that setllng It to zero does not appreciably

alter tha Iteratlvc approa:h. Thm modlflca Ilon method 10 the beltar of the two and has

been used in all the example: which follow For a more detallcd discuaslon of the uoo of
this constraint and the termination criteria the reader IS referred to Raf. [2).

The validation method c~nslats of Rcncratlng artlflcal sats of anolastlc response

data from known relaaallon time spectra. addint rtndom tGausstan) axpcrlmental

error wtth a desired sta~ldard deviation e io Ihe data, and then applying the DSA

method to the da:a 10 test how WCII the Input spectrum IS recov~red. [n the eiamplcs
which follow the Input dlttrlbutlon of relasat~on times waa ●tther a sln~lc or a

cusnblnallon of several Iosnormal {Gaussian in !OS t) dlstrlbutlona #lven by
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which is a single-peak dis[rlbuticrn centered and symmetrical about a Iogarlthmlc mearr

relaxation time :~ and with width parameter such tha[ :hc full wld[h a[ i c oi [he maximum

is 29. Multiple-peak Input spectra were also checked. The data were gcncrslcd ~rom a

ipcc[rum composed of Ilncar combinations of slng!c Iognormai Jistributlon functions. Such
a spectrum requires an extra parameter a which JIVCS !hc fractional con[rlbu[lon :0 ~hc totai

spectrum of each Iognormal peak.

Internal Friction

Sirmle Peak Stsectra. Fig. I shows sn example of an internal friction curve which has

been generated by computer. In this fi~ure tan ●/A. the internal friction normalized by the

relaxation strength is plotted Io#ari[hmically against frequency on Lhc top scale and agslnsl
reciprocal temperature on the bottom scale. As previously discussed. [hcsc plo~s are

equivalent and differ by a scale iactor Q2.3k ●ccording (o Eq. ($1. Thus the loP scale IS for

Internal friction measured Isothermally at constant relaxation [Imc. : - 1.0s, whiie the
bottom scale corresponds to measurements at constant frequency. w = 1.0 s ‘l. with the

[ AT CONSTANT RELAXATION TIME, r = .O wc]

Fc?EQUENCY, W \S-l)

-3
10 10

-2 0 2
10-’ 10 10 10

ml
10’

1

I
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g IT.”’=“ ‘EAKTE~RATuRE SCALE / \ i

/

/’
I

I

[
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\
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\ LOGf14~AL
. DISTRIBUTION OF \
\ RELAXAmON TIMC2

\ flml. o
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\m

\
i

l/ T(K-l)

[
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AT CONSTANT FREQUENCY, w” I.OS 1

Fi~urc 1, Internal frlctlon [norm mlizad by lhc ralaxatlon strcntth~ -rsus

both frequency ~los scala) and reciprocal tempcraturs, Tho solld curve IS
(or a Debya p--k. I.o.. fur s sln~lc relaxation ltma. Th@ da~had curv~ Is for

a IoSnormal distribution U( rclasatlon tlmas is dascrlbod In tile text. The

peaks ●rc symmctrtcsl on both the log fraqucncv and tha 1, T scalas. Tha

valuas shown for r. and Q were chosan 10 gIVe a convcnlcnt scala factor nnd

pamk pu-ltioti for the It’T plot.
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Arrhcnius relation being given by the prc-exponential :0 = 10-14s and the activation energy

Q = 31.9 kcal. mole. The more narrow of :he LWO in~ernal f:ic:ion peaks in Fig. 1 is a Debye
peak ~single discrete relaxation tlmc) while :he broader peak IS calculated from a single

lognormal distribution of relaxation ~imes with midpoin L :,, = 1.0s and width O = I.O. The
close similarity of Lhese two curves in Fig. 1 which have actually markedly different
distribution functions provides an indioa[ion oi the appreciable difficulties involved in the

problem of obtaining the rela~ation time spectrum. Also. it shouid be poln Led out rhaL the

analysis method must be sensitive to subtl~ differences in the overall shape of the curve

irrespective O( tILC SCalC factor for vertical scale. This is because in ●ny experimentally

measured situation the magnitude of the relaxation strength A is unknown so that the

measured quantity is tan o instead of Lkscnormalized quantity tan o/6 shown in FiS. 1.

Fig. I shows a continuous plot of the normalized internal friction. Discrete data pairs
which have been computer generated for analysls by the DSA method are shown in Fig. ~ for

(he same Input Iognormal distribution as in Fig. 1. In this and subsequent sets of computer-

generated dcta [o be analyzed, m = 50 data points have been gerwated. Also. to provids
realistic simulation of ●xperimen~al results. Lhese data have been chosen m; uncqua!

Intervals on the lot as or l;T ~calc and random (Gauss iarl) experimented ●rror has been

Jddcd to the exact.y-calculated daLa pOlrLLS [n ~his and hll subscqucn L internai frlctlon
valida~lons in thl$ paper, Lhe srandard deviation for the fractional experlmenla] error was

chosen as rJ _ 0.01. which IS a ~encrous cstlma Le of the iracllonal error In a Lyplcal

measuremers L. Evidence for the rlndom scatter In the data may be observed In Fig. 2.

especially In the region of the maslmum Internal friction.

z ~
INTERNAL FRICTION PEAK

o m m50 ~ATA POINTS . {

04’
t

m FOR FRACTIONAL .-*
ERROR ~OOl

INPUT LOGNORMAL
DISTRIBUTION

0.3 - /3 alo

rm ~ :.0s

0,2
t

●

●

●

●

●
●

FREWENCY, W (S”l)

Figure 2 Computer Eencra!cd Inlernrnl frlctlon vorsvs frequancy (lot

tuairi plot for the same lo~rrorrnal dlktrlbutlors pemk shown In Fi~. 1. bul

with rarsd~lm fracllun-1 errc” havln~ standard davlallon n ● 0.01 added ILI
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The starting condition for DSA of the data in Fig. 2 is shown in [he his~ogram of Fig.

3. Here the spectral amplitude of the i’h bin, N(J!n T,). is plotted vcr$us rhe relaxation Lime
on a logarithmic scale, The upper and lower spectral iimits as are shown by Lhe do[ted

vertical Iincs have been chosen as ri = 0.G3s and tr = 30s. The number of bins has been se[ as
n = 40, and as shown the gpec[ral amplitude is initially set equnl in each bin, N(~n :,) =

I/#n(fr; rt) = 0,1448 such thtt the area of the histogram is i/2.303 (area of 1.0 plotted on a

natural Iogarthmic scale). At this point the system is ready to begin the itera:ion process to

obtain approximate solutions for the A, according to Eq. f 12).

The DSA histogram approximation after 500 iterations of the data in Fig. 2 is shown
in Fig. 4. Also shown in Fig. 4 as a smooth solid line is the input spectrum used to generate

the dats of Fig. 2. The histogram has an area such that ZAI = 0.999 in excellent agreement

wi~h the definition of Al aa the fractional contribution to the relaxation from the i[~ bin.

Qualitatively co?fiparing the output histogram ~i[h the input distribution function in Fig. 4
we see that t’.le histogram approximation provides good reproduction or the original

spectrum judr,ed by amplitude, width. position. area and general shape. This resuit that the

DSA method is capable of approximating the input spectrum with such good accuracy with
only 50 .iatn points and with random fractional error of roughly 1% is strong evidence for

the c:, pa bility of the method. [t is. in fact, somewhat unexpected rhat a set of data to which

appreciable disorder in the form of r~rsdom noise (experimental error) has been introduced

cell be processed to re-establish the original information (input spectrum) which is inherent
in the system. This ability to filter the high frequency noise as a part of the process of

deconvoiutirsg the data to obtain the original spectrum is an important strength uf the DSA

method.

101 , : I I I I
,

STARTIH6 HISTOGRAM
, 0

n“ 40 m ,

rt”0.033
I rf~30s
I

H(l~ ri ) S l/(n 81cr) =0,145

~ ZAi ‘1.0
,

I ,
I
,

,

,

0

w

‘o““”‘1’::1-ti
,0-2 10-’ ,00 ,01 lo~

RELAXATION TIME,r(s)

Fi~ure 3. Histo~ram for the stmrt of the nonlinear regression analysis

calcula[lwt of relaxation time spactrum. This stsrting histogram is divided
into n = 40 equally spaced (lss~ scale) bins. The spectril limits r, and tr

have boon choson tu includ- tha expacted full range uf the input distribution
of relaxation times.
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Figure 4, Histogram of Fig. 3 but after 500 integrations using the DSA

method, The histogram shows good agreement with the i~lput spectrum

(solid line) used to generate the data of Fig: 2,

A more quantitative measure of the sgreement between the input spectrum and DSA
approximation is desirable. This may be obtsined by determining the position ~nd width of

the histogram by fitting s Iognormsl curve through the output histogtam to obtain the mean

relaxation time t~ and the width paramete: ~. The results for such a fitto the data of Pigs. 2

and 4 are shown in Table 1. Here wc see (for ~ = 1.0) that the position of the output spectrum

is 1,02 IS compsred with 1.0s for the input. Similarly the width p~rnmeter ~ h~s been

raproducbd within roughly 3%,

Table L kpue snd Output Parmnetars fw Lagnormd Reladon Tlmo Spectrs

INP~ OUTPUT (DSA)b COMPARISON

_rm(m) P Area Tin(s) p z~ Iteration q%) p(%) MJ9b)

I ,0 0.1 1.0 0.929 0.290 1.OW Sm 7.1 190 0

I.0 0.3 I so I.(X)6 0.289 I.m ml 0.6 3.7 0.s

[,0 1,0 1.0 1.02I 1,030 0.999 m 2.1 3,0 0.1

1,0 2,0 I .0 1015 1.9’/5 l,tn)l 2W 1.5 1,3 0.1

I,0 3.0 I,0 !M14u J 185 0,995 I@ 1s,2 6,2 0.3

‘U~ to generate int?md hictkm ,Intn tith 50 datt points to which rendom fractional axpwirnaud error with
standarddevisurm u = 0.0! In tied.

‘From diract spatuum mmlysi~d’ MOuvmputm-~anmatmtinternal Mction dsta udn~ 40 Mm IMbwat hy ● fit to ●

louIIonnal dhtributicm.

‘Percantdifkanca betwarli input md output parameters.

%nrldhaddata.
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A final feature of the DSA histogram approximation in Fig. 4 which should be

mentioned is the existence of the small sidepeaks which occurs at roughly 10-1 and 10s.
These peaks tend to show up in most DSA results. They tend to hav: magnitude which
increase with increasing cxperiment&l error (or for the anclastic creep analysis, when there

is error in the measurement of the initial and final values for the anelastic strain). Also,
these sidepeaks are stable for a given calculation in that they do not change with further

iteration. Interestingly, these peaks tend to vary markedly in position, shape. and amplitude

depending upon the choice of the calculation parameters r,, tr and n. The main spectral

peaks, on the other h-rid, do not tend to show this variation. This result that the input

spectrum is reproduced consistently independently of t’~r ctlcul-tion par-meters, while th?

sidcpeaks sre not. is important since it provides !he capability of determining whether a part

of the spectrum approximation is intrinsic or merely a nou.reproducible artifact of the

calculation.
,

Effect of Width of S~ectrum. It is desirable to know the capability of the DSA method

for determining spectra of various widths. This was done by generating and anslyzing sets of

internal friction data from input spectra with various (3, but with constlnt t~ = 1.0s, The
range of ~ waa O. 1 to 3.0. Each of the dsta sets w ls again generated with m - 50 dat~ points

of tan o(ro)/A vs ra spaced st unequsl intervals of log o .AIso, the same standard deviation-
u = 0.01, W~S used for the random !ractional error added to the tan $/Q values, The internal

friction da[a for ~ - 0.1 are nearly undistinguishable from data for a single discrete

relaxation (De bye peak), while those for p = 3.G give an internal friction peak which is more

than twice the width of a De bye peak of the same height, see Fig. 5.

z
o
i=
a
x 0.4 “

0,3 “

0.2 -

0.1 -

INTERNAL FRICTION PEAK
m s 50 D#l’A BOINT~

u FOR FRACTIONAL ERROR = 0.01

INPUT LQGNORMAL Dl!jTRIWTION

B“ 3.0
rm~ 1.0S

FREQUENCY, w (s-’)

Figure 5, Data for internal friction versus frequency for G Io#normsl Input

distribution of relaastion times havin~ b -3.0. Rsndom frsctiwtal error
with stmndsrd devittion 0-0,01 h~ve been added to the datn, A De bye

peak (solid Ilne) is shown ror compr,rison.
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The capability of the DS.4 method for resolving very nnrrow relaxation time spectra

from the corresponding inrcrnal friction data varies depending upon the spectral width.

Typically it is not as good as wa- d~monstrated Ior the relatively wide spectrum (~ = 1.0) of

Fig. 4. This is shown in Fig. oa in which the nar, ow input spectrum for ~ - 0.1 has a

maximum amplitude above 5.0, while the calculated histogram approximation, although it is

in the proper position and has a shape which is ❑early Gaussian, is too wide by more than a

factcr of three and has a maximum amplitude of less than 2.0, The histogram approximation

does however have a spectral area ZAI = 1.0003 which is satisfactory when compared to the

expectation value of unity. When the width of the input sp,ectrum is increased from B -0.1 to

B - 0.3S the anlayeis method is able to estimate the input spectrum with good accurtcy. This
is shown in Fig. 6b; hare the histogram approximation coincides well with the P -0.3 input
spectrum. As indicated. the histogram waa created using 500 iterations with the spectra

limits adjusted to be wider than for the narrower ~ -0. I peak in Fig. 6a.
●

Figure 6a to 6c. Input spectra (solid linen) and output histo~rams for

internal friction data generated from single lo~normal distributions uf

various widtho: (a) ~ -0.1, (b) ~-0,3, and (c) ~- J,(J, Note the scale

differences, eapacially for the moat narrow distribution (~ -0, 1) and the
very wlda distribution (1! - 3.0).
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When the input spectrum becomes extremely wide, such as for ~ = 3.0 yielding the
in[ernal friction data of Fig. 5, [he DSA method again is able to reproduce the input

spectrum with acceptable ~.ccuracy, see Fig. 6c. Here i[ may be seen [hat [he coincidence

between the input spectrum and [he ouLpu I his,ogram is siitisfactory but not as flood as ior

1.0 > ~ > 0.3. No[e that in Fig. 6c, because of [he wide spectrum the horizontal scale covers

a range of 16g T which is twice that of the previous figures, To obtain the results for the wide

spectrum in Fig. 6C from the internal friction data of Fig, 5, it was desirable to se~ the

speclral limits as ?, = 0.0003s snd tr = 3000s, a spectral breal. h of seven decades. Also, for
this anlysis it was necessary to smooth the data to remove some of the high frequency noise

of the simulat~d experimcrsta’ error. Without this smoothing operstion the oscillatory
solutions previously diecussad tend to develop resulting in multiple sharp peaks. the
envelope of which, has the shape of the htstogram in Fig. 6c. The smoothing operation

consisted of seque.ltially Ieast-squ Ares fitting of either a 2nd or 3rd degree polyrsomial tG

segments of the data consisting of from 7 to I I data points and thus redetermilting each data

point as the one on the polynomial cxrve. The smoothing operation apparently is required

when there is both appreciable scatter in (he data and the spectrum is relatively wide (~ >

2.0). When it was used on data with ~ s 2.0 but l.vith the same fractional experimental error,

it was shown not to change the output histogram appreciably.

As was done for the histogram results of Fig. 4. a quantitative indication of [he

success of the DSA method for analysis of internal friction data derived from relax a’.ion

time spectra with a single Iognorma] peak of varying width was obtained by fittil!g a
Iognormal distribution to the output hiltogram. The Iognormal parameters obtained from

this fitting are given in Table I for the histograms shown in Fig. 6 plus an additional result

for ~ = 2.0, The last columns of Table I give the percent differences between the input

Iognormal parameters and those obtained from the output histogram, Here it may be

observed that except for the very narrow input spect~hm with I.! = 0,1 the position, wi, ”h. and

area (Z AI) of the DSP. histograms arc within rough!y 10% of the input values; this appears

to be satisfactory for most applications, Also, it may be observed in Table 1 that when the

spectral width becomes large (~ > 2.0 for this case) the uncertalrity in the peak po~ition and

width is markedly increased. For ●pplications in which wide spectra tre involved special

care will b’; necessary to validate the DSA results.

Multiple Peak Spectra, One of the key needs in analyzing internal friction data is the

capability for determining whether a given anelaatic response is due either to a single

relaxation process with a somewhat broad distribution of relaxation times or to two or more

processes sach with relatively narrow or nearly-discrete relaxation times. Thin may be

particularly important in situations in which it is desirsble to know whatber tharo is more
than one mechanism controlling the reaction kinetics. Thus we now investigate the

capability of the nonlinear regression analysls moth~d to unfold more complex spectra, To

do this tan t/A vs os data were ●gsin generated with m = 50 data points from N(ln t) VIJ log

t distribution functions which had more than one peak, Subaequontly random fractian~l

exporimentpl error was added with u = 0.01,

In Fig, 7 intarnal friction data uro shown (peak B) which have bean ganerited usin~ a

distribution function with two equally weighted lognorm Al diatributionrn, each with 0 = 0.S
[which is relatively narrnw) and with mean relaxation times which ar~ a factor of four apart

(t~l = 0.5s and t~l = 2.00), These inter n-l friction data points may be compared with those

of Fig, 2 for the single Iognormal dlatribution shown In PIE, 4 which are raplottod in FIR. 7 am

peak A. [t may-be seen in FIII. 7 that only small differences exist betwean the two sets of data
even though encn get was generated from markedly dlfferont relaxation spoctrm, Specifi-

cally, the peak heights and widths are nearly the same, and there are only sllght a{ fferencea
in tho tail portions. Their close similarity sorvoa again to point out the difficulty of the

unfolding pro blortr . . , how to reconstruct very tlifferont input spectra from data which

appear to be v~ry similar. The result~ from tho DSA of internal friction penk B in FIB, 7 nro
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Figure 7. Data for two internal friction peaks plolted versus frequency.
Peak A is from a single Iognormal distribution (same as Fig. 2), Peak B is

made up of peaks 1 and 2 which are from two different Iognormsl

distributions with parameters as indicated. The close ~imilarity of the two

internal frictioli peaks is indicative of the difficulty of the unfolding

operation required to obtain the two very different inout spactrs. Rtndom

fractional error with u = 0.01 hus been added to both sets of data.

shown in Fig 8 as the USUSI histogram approximation of the spectrum. Aleo mhowu is a solid

iine is the 2.peak input di~iribution function, Comparing the hioto~rcm with the input

spectrum we obeerve that the unfolded approxim~tion i- qulto good, Importantly, the two

peaks hmve been resolved evan thourh they are CIOOC enoumh to~other so thmt they ov.rlap,

see dotted linen for sepsrate contribution of the two input spectra. Also. the 40 bin

approxlr,lation gives good reproduction of the hei~hl and position of the Input dlktribution,

Inter eatirrgly, the paak centered at the short relaxation time rml u 0,3a Is reproduced batter

thsn thfi one at tho Iortger tlmo, tml = 2,0a. Alno, tho hlatogram p.ak it tho Iongcr tlmc in not

centered se well with the input peak so that the two dlff~r by roughly 50% In position. This

Iendency for the DSA results fo produce ad]acan~ peaks with grcstcl spread than exicta with

the input distribution w-n found to be [ha case for many ot’ [ho multi pl~-paak ralax~tion

lpectrn which were investigated, especially when two of tha paaka ware rel-tivaly CIOSC

logether, Typically, it r?sulted in shifle in (ho patk position of 10 !O 2S%. This lantlGrIcy

m-y nu~ alwsys bc a serious drtwbsck since the capabill!y to resolve sapar~te pahks which
arc in close proximity and thus demonstrate the exittanca of sapartte intrinsic processes IS

typically more important,
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Figure 8. Input spectrum (solid line) and calcularrd output histogram for

peak B of Fig, 7. The DSA hislogram show~that the two overlapping peaks

t,: the input distribution function hmvc been resolved.

As a final testof the capability of the DSA method to reproduce multi plo-paak spectra
we conaidar the anal:~sla of the internal fr{ction rca~lts Shown in Fig, 9. Here is shown an

internal friction peak (m = 30, 0 = 0,01) which is the superposition of tha four separate pemcs

shown as dotted Ilnas, Thgse four peaks arc caah doterminad by r~lativoly narrow Iognormal

distributions (~ s 0,5) which hnvc mean r~laxatlon times dlffcring by factors of 4 or 5. Tha

test of the mathod 10 how wall it will bc able to r~triwo the orl~inal 4.peak input spectrum by

analysia of [he 30 internal friction data points aft~r r~ndom fractlort~l axpo:imcntal error

with u = 0,01 has been addnd, Tha ruault O( this calculation uslns S00 iterations is cho% aa

the histogr~m In Fig, 10 alone with the input N(ln t) distribution function utad to genorat~

the data, (Hare tho dashed linen are th~ s~porate spectral contr{hutionn and the solid Ilnc in

the addlti’le curve, ) Fig, 10 shows that tha histo~rnm prnvidoa s very lood aoproximatlon of
the input spactrum All (our of the original paska have bcon rcsulvad nnd hava smp!itudar.

pooitions, and shapes whlah s~ree WCII wirh the original distribution function. l’hi~

capability to repllcat. the fine structura of n 4.peak Input tpoat:um, even for a peak with

fractional contribution of 0.15 [posh #l), Is gritlfylng since It should ba sufflciant to meat

matt neodn in practica,

13ff9ct 0( Calculativ~ Thora ara thrae paramstcrs which are chotcn for

any given D9A calculation, [ha number of bins. n, and tha spectral Ilmits, ~, and r,, In

Sancral the r~rnults of ~hc calculation- were not found to ba charm, d sppraci~bly ( < 3% i~, lhe

width, position, and amplltuda of the main spectld pasks) by the choic~ of these

p-ramatars, Of tan It is decirablc to chooaa a Iargo number 01’ bin- sinca tha spectral
resolution Is improved. Usually thin choice is a compromise b,twcan ,l~]irad rasolutiott mnd

avail ahla computer time, The Iaiter can bo an Important consideration slnca thaso calcula.
(ions ~ypically require in the nei~hborhood U( 300 Iterations and tha calculfition time ptr
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drnta in Fig. 9. The histogram lhows that the four nearly.overlapping peaks

of’ Iha Input spectrum have all been resolved.
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iteration increases roughly as the squnre of the number of bins. As mcrs[loned earlier. [he

choice of [hese parn~eters was t’ound to markedly affect the posl[lon and amplltude oi the

small sldcpcaks and thus by repeating the analysis wi[h dl(ferent cholccs for these

parameters. varia[lans in the sidepeaks allowed them to be dis[inguishcd from [he main

peaks which are relatively unaffected.

Convcruence and number of iterations, The relatively large number of itcra[ions

which were used in the examples given so far were not always required. For instance. with no

experimental errqr added to the data it was found for both interrlsl friction ~lid anelastic
creep data that the sum of the squares of the residuals approached the machine accuracy

(chosen as the termination criterit) after less than 50 iterations. Typically, more iterations

were required (or data with greater amounts of cxperiment~l error, In general, it was (~und

thkt initi~l convergence was relatively rapid while final convergence was slow. Also, lhe rate

of ~onvergence and the final convergence values depended s[rongly, buc in no systematic
way. upon the choices for r,, rr, and n, This again serves to emphasi~c that the method gives

approximate, as ~ppuscd to exact. solutions. The approximate solutions, ,~lthough they arc

not unique because they depend upon the choice of calculation parameters, in all cases

examined gave results wliich are relatively close to the input spectrum.

Arselastic Creep

Validation of the

already been discussed

discussion particularly

the calculated spectra,

DSA method for the first-order kinetics of anelastic creep have
in detail (2). The following will review main points of the original

with regard to effects of the magnitude of experimental error upon

Again, the purpose of the calculation will be to approximate the

original relaxation time spectrum, but now with this spectrum controlling the anelastic

creep response. As before, the DSA method will do this by calculating the Al. exce Pl tile

appropriate equation will be Eq. ( 13), and the data to be used in validation of the method will

be fractional anelaotic creep ~(t) vs t,

Effect of experimental error, Fig, I I shows ● set of w(t) vs time (loo scale) dat~ with
m - 250 and no experiman[ai error These data have been calculated from an input N(~rI t)

distribution function which is shown in the same figure, This is s lo~normal distribution

function with wi~th parameter ~ = 1.0 (as in FIR. 4) msd cantered at t. = 104s. The output

histogram of N(~n rl) -ftor 31 iterations udrsg 39 bins is shown in FiS. 12. For thim

calculation the constraint Al z c wirh a = -0.0005 was u~od inatoid of the Al z O constraint

since it gnve more rapid convargonca. AIOO shown Ir. FIs, 12 are the psramoters obtained by
flttin S a Iognormal dlatributlon to tho hlatonrmm raault. Wh.n theaa parameters are

compared to the corraaponding ones of tho itlput speetrum (also shown In Fig. 12) the

afreement is extramcly #ood, better than 0.2% for -11 ~aramctars. such good aEr~emant

obtained cfter relatively fcw Itaratlons was found when the dats had no simulated

experimental arror addad.

To acccsa the capability io reproduce ifiput spectra with expcrlmorti~l error added. a

“worst case” sat of data were gensratad by -ddlng random error with standard deviation u =

0,05 (i. e., roughly 5’% @rror) to [ha data shown in Fig. I 1, Thosa lncla-tic racpon~a data Ire

shown in FIs. 13. Whwt thcao data were anlayzad u-ins DSA with n = 39 bins and a ●

-0,0005 the hiitogram shown in Fig, 14 was obtainodi This histogram is a relative’ J good

approximation of fhe original, acpaciclly corsoldarittt thti IarSa amount of scatter in ,0 data,

A postiblc problcm with thlt hlsto~r-rtr rcault might bo tht ralativaly smsll sidepeak at the

uFpcr sp-ctral Ilmit: howavor, this sidcpeak can ba fllterad out in ● similar way aa for the
internal irlction reculta by repcatlng tho calculation with a diffarant valuo for r,, tf. or fit As

befura, n quantitative maaaure of the a~recmcnt betw,crt tha input spectrum and ~hc
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Fiaure 12, Output histogram estimate of the input diairibu[ion function in

Fi~, I I obtained by the DSA n~ethod applied to the ane, as!ic creep results
also shown In Fig I 1, The sulld line is obtained by fitting a Iourtorrnnl

dintrlhution 10 the hlstugram,
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hlstosram approxlrrratlon h~s been obtained by fitting a Iosnormal dlstrlbutlon [o [he

hls~ogram, [he resul[lng clu[pul spcctrml parameters. which art 3!s0 shown In

Fig. 14, agree wl[h [he Input spectrum wtlhln ro~~hly fJ. f% for #. A.5% i~r :~ and 0 R% ~ar

the area.

Examlna[lon 01’ [hese and other results from ~omputtr-gefier atcd data wl(h vsry)ng

am O’Jn[S O( experimental error show [he followlng cffec[s due to Increased amounts ot’

random error: (i) There is ncr :,ystematic variation In the position, width. or shape Of [he

histoqram, (ii)Th+ fine ~tructural details such as the taiis of the spectra tend 10 brcome

obscured. (iii) The number of itcr~tions required to reach the termination criteria IS

incre~sed. (iv) the sidepeaks tend to become larger. but to still vary in pos; tion and

●mplitude ‘with different choices for the calculation parameters.

M_ul[lplc peak spectra, As has already been discussed fcr (he anal y$ls oi Internal

frlctlon results. the valid m~on Of :he DSA method for analysis of anclastic creep results h-s

included lnVC$tl Vd[l~n of effects dl~e [o multiple -petk input spcc[rs (2). Solme general

findings oi I’ +,tlga[lons will be de~cr. bed,

Dti IA vj I were gcnera[cd with m = 250 dmta paints with the N (fn f)

dlstrlbutlon i n compas?d of two overlapping Iogncrmal peaks with mean relax a[lon

times dlffcrlng by a factor of !0. Subsequently, random error wl[h a = 0.001 was ●dded 10

‘u(!). Analysls of lncsc data ~lth up 10 n = 60 bins showed very satisfactory replication of

[he magnltudc, shapes, ●nd positions of [he two-peak inpu[ spectra. Quantit~tively II was

Iound that Ihe output spectral parameters (using a [wo-paak lognormal fit to the histo~ram)

~huwcd an average difference of less than 4% from (he corre~ponding input parameters.

SImllnr ln~tcs[lgatlons were made uslnfl single and douola box distributions for Ihc

Inpul spectra, TIIS was d,~n~ 10 test the capablli[y of the method for analysis of data which

were darlved f’cm other [htn a Iogriurmal distr~butlon. The box distribution In addt[lon 10

the }oSnormal Is discussed In detail by NOWICk and Berry ( l), [t IS a more s:rln~ent test of

[he DSA method than the iognormal IJccause II haa discontlnultlaa. When dsta 4eI, -:?d from

box dlstrlbu[lons were ~nalyzad, the rcsultln S histogrtm approxim~tionc ttve good

reproduction of the pOSIt IO III and relative ma~r,ltudos of input spectra for both sin~le ~nd

double box dl~trlbutions. However, SS mlSht bc expected. there was difficulty repro oucln~

the exact shape of !ha box. particularly ●t the sharp corners, This finding is in agraomont

wllh Internal friction results for [he vary narrow sharp dlstributiona with @ < 0.25: ‘

app~rently tho DSA method ~an not easily resolve such fine detnil, in some caaas this

resolu(lon capa’~liity m-y bn improved by lncraosln~ tisc numbar of bins. For applications of

the method LO spaclrL with fine structure II bccomcs particularly important to do v~iidstlons

In reglmas which are appiicabla to the Input spectra being invastigm[ed.

g[h~r affects, Ref. (2) prcsenls a fairly dctaiisd investigation of how variation of !ho

calculationai parameters affccta [ho D9A results Ior [h@ anaiysin of tnaisstic crocp. AI

prcvlousiy diacussod, for any given application, boctuaa ths DSA rosuit II only an

spproaimatlon O( the Input spectrum, there is no ut~iquo output his[o~ram, Thus the

irr, purtant lhlnf to :on#ldar it how much this hlctogram vsrias when [ho parameters fol

doin~ the calculation aro chanted. Many cases wcra studmd; no evtdanco wsc found for

systuma~lc variation In the solutlonc w;th chmt~cs In tha caiculatlonal pmramotars. Alto, tfr

uil caacs (ha approximate soiutlon hlalogrmms were Cood estimata~ of tho Input spactrurr. .

The key polnl hero IS thw the noniirtcar regrasslon Icast-squtrca al~orlthm gava sppro~-

Imtta soiuttons which wore close both to aach olhar and to the known Input spectrum when

different caiculational paramclcrs word choson. This flndin~ that tha DSA mathod d. ● s not

produce incorrect approximations of Input spectra IS another Important rosuit of Iha

vclitfatlon.



One other poIfi I should be meallonecs corrcernlng [he ~alida[lon oi !nc DSA “nethod ;~r

use wl[h anclustlc creep dala. !: wa3 found :na[ [he mc[hod h~j J hct[c: ?c>olJ:lur. capabl,:t}

ior narrow Input !pectra whtn II IS applied :0 [nc ~lrs[-oracr klnctlcs 01 anclast; : ::ecp than

It does for the Deb}e cqua!lon O( lrs(ernai ~rlc!lon. For instance. ul:h anc!a$:ic :rccp Al *a$

shown [o satlsiactorlly reproduce Inpu[ spectra for a jln~ie io~normai peab wl[h J _ 0 i ,31

while. as we have shown here. for lntetnhl fr[ct [on I esults the most narrow peak [ha[ was

resolved had ~ = 0.3. Such a result IS not unexpected: :[ merely rcllccts !he well known

effects of widely aiffering behavior of dlffarcnl kernels In the lnl~gral cquellon.

!ntern~l Frlctlon vs Temperature

.4s was previously polnteti out in discumsln~ differences between cons[an[ temper ~lure.
and constani freq~lency ln!ernal !rlctl~n :xperlmen [s, II II c~pcrlhen!all’i Je?lrsbic to d@

expcrtmcn[s while varying [he [empe~aturc Instead of the frequency, T!rc discussions 1~ !hc

prevlou~ ,ecllun validaled :he Internal frlctlon analysls met,, od ior frequency ● s lhc var:ablc

because this IS more ?as Ily !realed. Since this validation IS for the Debve equa[lon as a

kernel. II IS, however. equally applicable 10 csscs In which temperature {or relaxation Ilmc!

IS !he varlablc. Thus the v~lldation need no~ be repealed. [n the iol!owlng dl$cusslon [he

rcla[lonshlps for cnalysls of relax ~tlon processes In which Internal frlc[lon IS measured as a

function of ~emperature WIII be dcscrlbed. This $iscusslon WIII [rca[ [his problem Wt[huul

rilaklng [he usual simplifying assumption tha[ J , a JU. II WI II, however. assume thal [he

varla[lon of frequency with [emperaturc IS rela[lvcly small and thus can be Ignored.

[I IS convcnlcnl at this polnl to cous!der two cxlrem,’s ~n the dls[rlbu[lon of relaxation

(Imes which govrrns the rclaxa[lon klne~lcs. These both ~rlse naturally from [he Arrhenlus

relatlon, Eq. (4). For a dr[allcd discussion see N.sw Ick and Berry : l), The (irs[ cx[rcm? 10 be

considered IS one III which (he dlstrlbu[loll ar~scs only from a dls[rlbutlon :n [hc prc

exponential factor IQ. Thus [his dls[rlbut~on has only a single activation energy The second

extreme appllcs to the oppoa IIc cond; [ion. that the disfrlbutlon IS due comple[elv 10 a

distribution of activa[lon ener~les. Thus for this dlstrlbutlon there IS a constan~ prc

exponential factor ta, In prac[lce ● combination of these (WO conditions may CXISI, bul for

[he analysls It IS USC(UI [o assume one or the other.

Dlstrlbutlon of r. only

For this case we consider the dlstrlbutlon N(4n to) v’hlch IS the relaaallon IIme

spectrum of pre. exponen[lal Arrhenlus factors. Since the acttvatlon energy Q IS a Conslani.

this spectrum O( relaxation :lmas do~a not chars~e thupa with tampcratura. but only thl(:s

●long the r scale. T’hus by obtalnlng N(~n tc) ●nd Q we inow the spectrum O( relax nllon

[Imes at nny given [empart!ure. Substltutlng [ha Arrhenlus rela[ion Eq. ( t) In(o Eqs, t l). Ii3).

and (9) we obtain for the Internal frlcllon as a (uncllun O( temperature

u J: N(fn t,)
am USP (QM7

d h t,
1 + d T:&Ip (2tjmj

Ia,rl+(-r).

Eq, ( 15) has a Frcdholm Iype O( Intetral equrntton In both lhc numerator and the

denominator, To ubtalrr the approximate solutlon Ior P4(fn ro) ror n bins we follow the same

procedure for ldkln~ a sum approxlmallon as WMO used before but making u~e 01 the

magnitude of the relaa~tlon as 6JI = 6J Al and L 6J, = 6J [u obtsln



Here 10, IS the v~lur of [he pre-exponential rsctor In the Ii” bln and [he histogram IS foi a
spectrum of lhe SG f-clors.

Eq. ! 16) rnny then be usoo with the DSA method if we choose values for lhe number of
bins n ●nd the spectr~l Iimts 7., ●nd r,, and $upply the values for k and w. For Eq. ( 10),
however, the mnalysis IS different because in eddition 10 the relcx~tion magnitudes 5JI we

also use the nonlinear regression sntlysls IO obtain the values for [he activation ener~y Q

Jnd [nc unrelaxed compliance J“, Thus we must set Lhc number of bins wl[h ihc constraint n

y m - 2. The conversion 10 obtain N{fn r,) [he spectral amplltude oi rhc I:h bln IS Ihen

obtalncd uring Eq. I 12a) and A, ■ 6JI,6J. FIIISIIY the rcltxa!lon ~trerrg[h A can then be
●ompsrcd with cxpcrlmcrrt using L _ Z 5JI J+.

Dls[rlbullon rJI Q (In Iy

ThIt Jlstrlbullon a$sumei a conslan[ ?~ and an activation energy distribution function
NIQ} Knnwtng ?JfQI and f,, one cnn usc the Arrhcnlus relation IO con~erl to N(~n f) at. sny

~l,cn [crnperaturc. Thll result ~an [herr he compmred to a compmrablc spectrum oblalncd by

!hc .me!h Ud jUSI dCSC~ihCd .\gJln. ~ubstltutlng the Arrhcnlus rclatlon we ob[alrr (or [he
!n[crnal irlc~lon an expression ●nalagous [o Lq. (IS)

lake the sum approrlrnation

where Q, IS the ~ tluc of [he ~ctlvatlon cnargy In [he Ii” bin.

To do the DSA for n bins usln~ Eq. ( 18) WC div:de the nctlvstlon enersy spectrum up

Into n #qusl In[ervals of width 6Q. ~el Iha spectral Iimlts for tha activation aner~y spectrum

Q, and Q= s@I the pre Ileratlon values for the spectral d~nslty of [ha Sctlvatlon ener~y In

Ihe I“ bln 10 a startln~ vslua Q,, and input the known VSIUOS for or and k, For this cata the
DSA will #Ive valuas for tha spcctrd danrlty 6JI plus vhIuos (or rO snd J,. As with Eq. [ lb)

lhe ms~nltude of tha relax mlon IS obtalnad (rem Z 6J, = 6J whllu tha spactral mmplitude O(
Itte I“ hln IS ●catn oblalrrcd from Eq, I 12at.
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experimental situa[lons in which the ~arla[lon 0[ the frequency m Wl(h temperature can not

be Ignored by assuming a constant frequent). [he expe; lmen[ai values o!’ u(T) can be

substituted into ei[her Eq, ( 16) orl 18),

Conclusions

( 1) The one mos[ lmportan~ conclusion of [his paper is that a method has been

developed and validmted for directly analyzing internal friction and anclastic creep results I

[O obtain a good approximation of the spectrum of relaxation times controlling the kinctlcs

of the anelastic response.

(2) This method. referred tc as Direct Spectrum Analygis, has been demonstrated to

provide approximations of known input spectra which replicate [he position, amplitude,

width. and shape c~ an orlglnal Input spectrum. The approximations are typically accurate

to better [ban IO% for input spectrn concistlng of (a) Single Iognormal and single box

distrlbutloits and (b) mul[iple Iognormal (up 10 four peaks)

pcak$).

:nd box distributions (two

(J) Limits to the capability of the method are due to difficulties in resolving fi~e

slruct%rc III the spectra such as the corners of the box distribution or Lhe sharp peak of a

verv narrow (nearly discrete) spectrum.

[4) Random experimental error in the data [ends [(J limit resolu[ioli: however, (he

method sa[isfactorlly approximates spectra for internal friction data having fractional error

wt[h standard devla[lon o = 0,01 and for normalized anelastic creep data having absolute

error with standard devintion a = 0.0!.

(5) The method has been shown in all of the many cases considered to give correct
approxlma[lons, i,e, . i[ does not c6nverge on approximate solutions which are not close to

the know}~ Input spectrum,
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